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Role of friction in compaction and segregation of granular materials
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We investigate the role of friction in compaction and segregation of granular materials by combining
Edwards’ thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical cal-
culations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures
of grains differing in frictional properties are found to segregate at high compactivities, contrary to granular
mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation versus
friction coefficients of the two species is generated. Finally, the characteristics of segregation are related
directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.
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[. INTRODUCTION order to verify experimentally the validity of the models used
for describing these static properties. One such proposal for
Friction plays a significant role in packings of grains in athe description of static granular materials is the analogy to
granular material, however due to the nonequilibrium naturehe statistical mechanics of thermodynamic equilibrium pro-
of such materials their macroscopic properties do not triviposed by Edwardgl], a more detailed description of which
ally result from the microscopic physics of their constitutes.will be given in the following section. The central idea be-
Compaction and segregation are two macroscopic phenoniind it is that even though the system is static and does not
ena which occur in granular materials undergoing series ofnove with time within the ensemble of mechanically stable
extensive operationfl] (operations of a statistical nature arrangement of the grains, we may assume ergodicity and
rather than “Maxwell-demon” operations which act on employ statistical mechanics considerations for the probabil-
single graing Packings of identical hard spheres compactedty of finding the system in any one of its states. This model
by extensive operations reach a state of random close packequires the existence of an analog of temperature, referred
ing (RCP), rather than an ordered crystalline packing, whichto as “compactivity” (other effective temperatures may be
has a higher volume fractiofdefined as the ratio of the sum defined for jammed granular materig®2,23, and attempts
of grain volumes to the volume the system occupieder-  have been done to connect them to the compactj2idy25)).
standing the process leading to RCP, its geometrical propeRecent experimental evidence for reversibility in compaction
ties, and whether higher volume fractions may be obtained iprocesse$26] has provided justification for this thermody-
of great importance for physics and for engineering. Thenamic analogy and have proposed a connection between
tendency towards segregation in granular mixtures comprissompactivity and experimentally controllable quantifi2g],
ing grains with various mechanical properties is interestindiowever the proposal remains controversial.
for the physicist and disturbing for the engineer, for whom a Edwards’ hypothesis is that an analog of the free energy
homogeneous mixture is often an industrial néfet a re-  Y=V—XSis minimized, wheré/ is the system volumeis
view see Ref[2]). the entropy, an is the compactivity. Our expectation that
Segregation in granular materials has received much athis formalism may predict frictional segregation, as will be
tention in recent yearffor a review see Ref.3]). The phe- shown rigorously and discussed in the following sections, is
nomenon is observed for grains varying in s[Zd, shape based on the following argument. Consider two systems of
[5], friction coefficient[6], and density{7]. Segregation oc- identical grains, such that the friction coefficient of the first
curs due to vibratior}8], tapping[9], rotation[6], pouring  system,uq, iS greater than that of the second systers,
[10], and shearin§i11]. Experiments are performed for mix- Then S;>S, because every configuration available to the
tures of many particles of two different specigsr a review  second system may be identically realized to the first system,
see Ref[12]) and with single intruder particles in systems of while the converse is not true. This suggests that under cer-
a single speciegl3]. Existing theoretical modeling of segre- tain circumstances a mixture of grains with different friction
gation due to rotatiof6,14,19 and pouring10,16] is based coefficients may prefer to segregate in order that its entropy
on kinetic phenomena: segregation is explained as a result o maximized, competing with the preference of the entropy
different flow properties of the different species. Monteof mixing to be maximized in the homogeneously mixed
Carlo simulations of dynamic phenomena in vibrated sysstate.
tems give insight into segregatiph7] as well as compaction The statistical hypothesis has been used to investigate
dynamics of single species systefiig]. Similar dynamic  segregation in binary mixtures of species differing in size by
phenomena have been captured analytically in models base@dapping them to the Ising model, resulting in segregation
on free volume consideratiof$9—21. below some critical compactivityl,28|. Recent geometrical
This paper deals with the role of friction in compaction calculations have enabled relating the ideas of the statistical
and segregation through the analysis of the static propertiggroposal to actual densities of granular syst¢ag.
of granular materials. The results obtained may be used in In Sec. Il we use Edwards’ statistical hypothesis together

1063-651X/2003/6@)/0613019)/$20.00 68 061301-1 ©2003 The American Physical Society



Y. SREBRO AND D. LEVINE PHYSICAL REVIEW E68, 061301 (2003

with a simple mechanical model for the quantitative descrip- Umax Umax
tion of friction in two-dimensional2D) and 3D single spe- Z:f - f e >i%dy,- - -dvy
cies granular materials. This is combined with simple calcu- fmin “min
lations of Voronoi cell volumes for general coordination Umax N
numbers resulting in the dependence of volume fraction on =< L e”’de)
min

friction coefficient and compactivity. Section Il uses the

mean-field approximation in order to describe segregation in

a binary mixture of grains differing in frictional properties. =
Unlike mixtures of grains differing in size, which may be

mapped to the Ising mod¢l, 28], frictional differences be- \ynere we have introduced the notations, 4= (v min
tween grains result in larger entropy for the rougher grains+vmax)/2 andAv = (v max—Vmin) 2.

Therefore, these systems may not be mapped exactly onto The ayerage volume per grain may easily be derived from
the Ising model and segregation occurs above a critical comy,e partition function as

pactivity and not below it. We then generate a phase diagram

for segregation versus friction coefficients of the two species. (V) 1__9dIn(Z) Av

Finally, the dependence of the results on compactivity is <U>:W:NXZT:Umid+X_AU COt"(y)-
eliminated by using the volume fraction as a measure for

compactivity. Section IV concludes with a summary of the &)

results. This expression has been derived in R&f, and it is clearly

seen that aX—0, (v)—v i, and asX—x, (V) —=Umig-

This is analogous to thermal systems, where at low tempera-
tures the system is most probable to be found in its ground
A. Statistical model state, and as the temperature is increased exited states are
cupied with increasing probability until the limit of infinite

Edwards{1] for the description of jammed granular systems.'€mperature, where all states are occupied with an equal
In this formalism each mechanically stable arrangement oProPability, and the system’s energy is the average energy of
the grains is equivalent to a microstate in statistical mechar@ll these states.

ics, and the total volume the grains occupy plays the role of

the energy. The analog of temperature is assumed to exist, is B. Mechanical model

denotedX, and is called the compactivity. We measién We would now like to introduce mechanical and geo-
units of grain volume so that the analog of the Boltzmannyetrical considerations to estimate,, and v 4y, Which

constant is equal to unity andis dimensionless. In analogy st be known in order to evaluate the expression in(8g.
with the canonical ensemble of states in thermal systems, thha minimal volume is achieved for hexagonal packing in
probability for the Occqrfence_g);a state with volutdels > and face centered cubic or hexagonal close packing in
assumed to be proportional & . 3D. The corresponding Voronoi cell volumes avé>

We consider a system & identical spherica(in 3D) or  _ 2 3D _ 3 ; : ;
. X ; . =12r< an - =+/32r°, wherer is the grain radius. Th
circular (in 2D) grains. For every arrangement of the grains, esultin av?)ll;rme frzctio,ns 221)23 t_e ?27 ZDEfI uf\/l—z €
the total volume of the system may be written as the sunt 9 max _ T Umin= T

1 3D _ 3/, 3D _ __
over all grains of the Voronoi cell volume around each grain,~ 991 @nd® o, = (47/3)r*/v s = 7/@0-74- _
v;: Although purely geometric considerations determine

Umin, the frictional forces between the grains manifest them-
N selves inv .. The idea behind this is that friction at grain
sz ;. (1) contacts allows for the formation of arcs and for a gradual
=1 decrease in the number of contacts per gfaiti, which in
turn increases the volume of the Voronoi cell around every
Average volumes of Voronoi cells, calculated neglecting spagrain.
tial correlations between locations of grains, have been In order to estimate the effect of friction in granular ma-
shown to agree with exact calculatiof80]. Moreover, cor- terials we will consider “toy systems” consisting of a small
relations have been shown to have a small effect on the desumber of graingthree in 2D and four in 3D calculate the
pendence of total volume on compactivitg9]. Therefore, effect of friction there, and use the result in order to obtain
we use a mean-field approximation and assume that the vokn approximate prediction for the dependence gf, on the
ume of every Voronoi cell is evenly distributed between afriction coefficientu. This, in turn, may be inserted together
minimal and a maximal volume&; i, andv,ax. The geo-  with v, into Eq. (3) in order to obtain an approximate
metrical and mechanical considerations determining thesexpression for the dependence of the total volume of the
volumes will be presented in the following section, and atsystem, and hence of the volume fraction, @onThe results
this stage it is only assumed that;, andv,ax are uniform  will depend on the compactivity, whose physical significance

N

; @

Av
7vmid/X 1 -
2Xe sm){ X

Il. SINGLE SPECIES

We use the statistical mechanics hypothesis proposed

for all grains in the system. still requires elucidation. However, even without understand-
Following the analogy with the canonical ensemble, weing its significance, a few predictions for experimental re-
may calculate the partition function: sults may be drawn from the model presented here.
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(a) (b)

D

FIG. 1. The 2D “toy system.” The shaded rhombus is the seg- FIG. 2. (a) The 3D “toy system.”(b) Section of the top grain
ment of the Voronoi cell lying between two adjacent contacts. and one of the bottom grains.

The 2D toy system consists of two grains lying on top of  \we would now like to use the results of these simple
a horizontal plane and a third grain lying on top of thés®e  considerations to evaluate the maximal volume of the
Fig. 1). All grains and the horizontal plane are assumed to b&/oronoi cell around every grain in a granular material. In
hard, and frictional forces with an equal coefficient of fric- such Systems frictional forces allow the existence of |arge
tion, M, act at all four contacts. A uniform gravitational force ang|es between contacts of every grain with its surrounding
acts downwards on all grains. The condition for mechanicalyrains. We assume that the maximal angle between contacts
equilibrium is that forces and torques acting on all grainsin a granular material depends on the friction coefficient in a
vanish. It can easily be seen that this is satisfied Wheneversim"ar manner to its dependence in the toy systems. In order
to calculate the Voronoi cell volume around every grain we
first assume that the grain is far from the system’s bound-
aries, since we are seeking a description of average bulk
properties of the packing. Moreover, we assume that the
where 6 is half the angle between contacts of the top graingngles between adjacent contacts of this grain with its sur-
with the bottom graingsee Fig. 1 For u=1 Eq.(4) is  rounding grains are uniform and are given ®ys in the toy
always satisfied, and any state with6<¢<m/2 is me-  systems. Note that since we allovto vary continuously, it
chanically stable. For smaller values pf only states with may not necessarily be physically possible to build these
0= Omax are mechanically stable, whetg,ax is determined  packings, even locally. In 2D it is possible only éfis an

sin@ 4
<
1+coss M @

from integer fraction ofw, while in 3D it is possible only if the

] coordination number is 4 or 6, which correspond @o
SIN Omax _ 5) =1.23 andf#=0.96, respectively. The general expression for
1+ c0SHpmax - the Voronoi cell volume igsee the Appendix

If u<(2+3) 1=0.3, the frictional forces cannot hold the ( mr?tand

top grain on top of the two bottom ones, and these simple T (2D)

considerations may not be used in order to determipg,.

In this case the volume of the Voronoi cell around every (gy—{ ar3\3singtang

grain is set in the model to,;,. Substituting this into Eq.

(3) yields{v )= v yin, Which corresponds to the maximal vol- 1 3a _a| D)

ume fraction quoted earlier, and hence, to crystallization. (1+3 cogo)tan V tanItan?Z

Therefore, this model may not be used for frictionless sys- ¥ (6)

tems, since it predicts crystallization at every compactivity.

In 3D we consider three grains in an equilateral triangleyhere o= cos [(3 cos @+1)/4] is the angle between two
lying on top of a horizontal plane and a fourth grain lying on ggjacent contactésee Fig. 6.
top of them[see Fig. 2a)]. As in the 2D case, all grains and
the horizontal plane are assumed to be hard, frictional forces
with an equal coefficient of frictiony, act at all six contacts,
and a uniform gravitational force acts downwards on all We combine Eqs(5) and (6) to get the dependence of
grains. Again, the condition for mechanical equilibrium canv,,x On w. The resulting volume fractiod is now calcu-
easily be seen to be given by Ed), however nowd is the lated using Eq(3) and plotted in Fig. 3 as a function of
angle between the vertical direction and the line connectindriction coefficient and compactivity. Compaction depends
the top grain with any one of the bottom graifsee Fig. on friction only in the region 0.3 u<1, where the me-
2(b)]. As in 2D, for small values ofx, and specifically for chanical model used here is relevant. Xs-0, ® ap-
frictionless systems, these considerations cannot be used pooaches its maximal valuéetermined from geometrical
estimate the volume fraction, since this model predicts cryseonsiderations and asX—, it approaches a value larger
tallization regardless of compactivity, while actual 3D granu-than its minimal valug¢determined from mechanical consid-
lar systems do not fully crystallize, but fall into a RCP state.erations, since all possible volumes between the minimal

C. Results
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to the Ising model, a single minimum &ff) means the two

! species tend to get mixed homogeneously at a concentration
0.9} Z'1¢  equal to the global concentration determined from the num-
0.8} -0.32 ber of grains of each species. The existence of two minima of
0.7} Y(f) means that the system tends to separate into domains
0.6k =0.36 with two different concentrations. The percentage of the sys-
o 0.sh =1 tem with each of these two minimizing local concentrations
~ is determined from the global concentration according to the
& 0.41 X=1.8 Maxwell construction(see, e.g., Ref.32]).
0.3r g3 2 The number ofA grains isN,=fN and the number oB
0.2p 5.6 grains isNg=(1—f)N. In the mean-field approximation the
0.1} =10 number ofA-A contacts ifN,,=f2Nz/2, the number oA-B
0 =0 contacts isNyg=f(1—f)Nz and the number oB-B con-

0 0.10.20.30.40.50.60.70.80.9 1

0 tacts isNgg=(1—f)?’Nz/2, wherez is the average number

of neighbors per grain, or the average coordination number,
FIG. 3. Volume fractiond vs friction coefficientu, for several ~ which is assumed to be uniform for all types of grains. The
values of the dimensionless compactivityfor 2D (solid lines and  contribution of every contact to the total volume is limited
for 3D (dotted lines. Volume fractions are normalized according to according to its type between 2,;,,/z and 2 /z, withi and

their maximal values,® pa,=m/12=0.91 in 2D and®max  j denotingA or B for the types of the two grains in contact.
=m/\/18=0.74 in 3D. The bounding minimal and maximal volume T partition function is

fractions,® ,;, and®,,., are also plotted.

as eitheru or X increases. The dependence of volume frac- (FN)I(1—f)N]! in
tion on friction predicted here may be investigated experi- 5
mentally, by comparing granular packings differing only in ons oo \PTATONfrogg o (20N
friction coefficient, which have otherwise been prepared L € dv L € dv :
identically, and hence may be reasonably assumed to have mn e

equal compactivities. (7

2
and maximal are equally probable. Obviously,decreases N (IUAAe”’de>f §
v

X

lll. TWO SPECIES: SEGREGATION ,
Not only doesZ not depend orz whenz is assumed to be

A. Mean-field model uniform for all types of grains, it can easily be seen that

We would now like to describe a system consisting of twowhen different values of are assigned to the different types
species of grains differing only in frictional properties. The of grains, the same expression is obtained. This is an impor-
central question we wish to address in such systems itant result in the analogy between the configurational statis-
whether the two species mix homogeneously, or segregatical mechanics of a granular mixture and the Ising model or
into separate domains. For a system of two species deAoteda binary alloy. In the Ising model spins are arranged on an
andB, we shall assume we know the compactivityand the  ordered lattice, all spins have the same number of nearest
friction coefficientsuana, tag, @ndugg between two grains neighborsz, and the total energy is determined by the states
of type A, between a grain of typ@ and a grain of typd3,  of the spins on all the lattice sites. In a granular system, on
and between two grains of ty@® respectively. The consid- the other hand, the disordered spatial configuration deter-
erations presented in the preceding section may be used mines the volume of the system and every type of grain may
order to calculate the maximal volumesa=uv madan), have a different number of nearest neighbors, or a different
VAB=Umad Mag) aNdvgg=vmadep) Of the Voronoi cells  coordination number, which is related to the volume of the
around anA grain surrounded by grains, anA grain sur-  Voronoi cell around it, or to the volume it occupies. Due to
rounded byB grains(or a B grain surrounded by graing, the different friction coefficientsz varies between the differ-
and aB grain surrounded b grains, respectively. We de- ent types of grains, as is indicated in RE81] where the
scribe a monodisperse system, hence the correspondirfigction dependence of the average number of contacts is
minimal volumes are identical for all types of grains and areinvestigated. The number of contacts of every type and the
denoted here by i, - contribution of every contact to the total volume depend in-

We would now like to write the partition functio@ for  versely onz, and since only their product enters the total
two species and to derive from it the analog of free energyyolume of the system, the resulting partition function does
Y=—XIn(Z), as a function of the concentratidr=N /N, not depend on the values pfor the different types of grains
whereN is the total number of grains and, is the number [34]. We will soon see where such physical differences be-
of A grains. The constraint on the total number of grains oftween the granular mixture and the Ising model do affect the
each species in the system causes us to \i@s a local resulting behavior of the system.
concentration which varies throughout the system. As in the Using the partition function we now evaluate the free en-
mean-field description of a binary alloy, which is equivalentergy:
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Y(f,X,N)==XIn(Z)=XN[f In(f)+(1—f)In(1—f) ergy depends only on it. In the granular model presented here
a topological state, specifying the types of contacts around
+2f(1—-f)R(X) = In(X) = fRaa(X) every grain, allows for a range of volumes for the Voronoi
4 cells around every grain and therefore for a range of values
(1-F)Rep(X)], )

for the overall volume of the system. As in the Ising model,
where we have used the notatiorg;(X)=In(e mn/X the topological state is specified by the concentration in the
—e %™ andR(X)=[Raat+ RBB)/Z]_RABJ and the Stirling mean-field approximation, however the total volume of the

formula has been used to evaluatdlirfor largeN. Defining ~ SYStém depends both on the concentration and on the com-

Avjj=vj;—vmin We see that pactivity X. _ _ o
The reason for segregation only at high compactivities
J(I—e dvan/X)(1—e Bves/X may be understood to stem from the range of possible vol-
R(X)=1In . (9 umes in the following way. All the Voronoi cells around the
(1_e_AUAB/X) H F .
grains have the same minimal volumg;,, determined from

) . _ geometrical considerations. The probability for finding a
We would now like to minimizeY for given overall compo-  \,5r0noi cell in an exited state with a larger volume,
sitionsN, andNg qnd for a given compac_tivity(. Equa'tion_ >v.n, decays ae "X, Therefore at the limitX—0 all
(8) has been derived under the mean-field approximationy,ronej cells are expected to be found in their ground state,
therefore it deS(_:rlbes the free energy of a region with UNmamely, to have a volume=uv ,;,, independent of the fric-
form concentratl_onf. Formally we should now define the on of the grains, which only determines the maximal
local concgntratmn as a spatially dependent coarseagraine\%ronoi cell volumep ma{ 1). Hence, at low compactivities
function f(r) and the free energy as its functional,f(r)]  the differences between grains vanish and the two species
=fY[f(F)]dF, and require thaf(F) minimize Y under the  mix homogeneously. Segregation may occur only at high
constraint that () [f(r)dr=N,/N. The spatial integral Compactivities, where exited states, which exist due to fric-
over all the system of the last three terms in EB), which ~ tion, have a greater “thermodynamic” weight. This occur-
are linear inf, is independent of the functidr(F). Therefore 'c¢€ of segregation at h'gh compactivities rather than at low
these terms do not contribute to the minimizationYpfand compactivities may explain the frequent appearance of seg-

we need only consider the contribution of the first threeregatIon in granular systems, which typically have significant

terms toY. We thus obtain an expression similar to the mean__cogmpactlwtles, sinc&=0 corresponds to a crystalline pack-

field free energy of an Ising model or of a binary all@38].

The “equilibrium” concentration is now determined from Since forR>0, R(X) is a monotonic functiofas can be

seen from Eq(9)] which begins at zero, and since the con-
dition for segregation is th&®>1, there is only a minimal
=0, (10 critical compactivity for segregatiofand no upper bound
above which there is no segregati®o we may determine
whether segregation is possible by investigating the high
compactivity limit of R(X). This limit may easily be evalu-

aY—XN
==

f

which is equivalent to

2f—1=tanfR(X)(2f—1)]. (11  ated to be equal to
For R(X)<1 the only solution to this equation i&=0.5, R.=R(X_%)=In VAvapAugp 12
which corresponds to mixing, while f&(X)>1 two differ- »=R(X—)= Avag '

ent solutions exist and the systems segregates into regions

with these two minimizing concentrations. Therefore, theand the condition for the existence of a critical compactivity
condition for segregation is th&(X)>1, whereR(X) is  for segregation for given values of the friction coefficients is
given by Eq.(9). thatR,.>1.

SinceR(X—0)=0, no segregation occurs in the limit of  This condition may be understood in the following way.
low compactivities. Contrast this to the behavior of the IsingThe free energyy =V —XS, includes a volumé/ term and
model and binary alloys, where phase separation exists a@n entropySterm. At high compactivities the entropy domi-
low temperatures, and specifically in the limit of zero tem-nates and minimizing the free energy is equivalent to maxi-
perature[33]. Here there is a minimal critical compactivity, mizing the entropy. The entropy includes two factors, a
above which segregation occurs, rather than the maximdkcombinatoric entropy” related to the topological state of the
critical temperature, below which phase separation occurs inystem, namely, which grain is in contact with which other
the Ising model. The basic difference between the modefrains, and a “geometric” entropy related to the variety of
presented here for granular materials and the Ising model igolumes the Voronoi cell around every grain may have
as follows. In the Ising model the energy of the system iswithin one specific topological stat¢his is not the case for
determined only from its topological state, namely, once théhe Ising model, where the topological state determines the
topology of which element is the nearest neighbor of whichstate of the system, and the total entropy includes only the
other elements is specified, the total energy of the system isombinatoric entropy, or the entropy of mixifig2]).
determined. In the mean-field approximation these topologi- The entropy’s dependence on concentration at the limit
cal states are described by the concentration, hence the ed— is given by
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S=—N[fIn(f)+(1—f)In(1-f)+2f(1-f)R..]. 1.2 :
(13 : s, M
1 :
The first two terms are the combinatoric entropy or entropy :
of mixing, while the last term is the geometric entropy. The s :
geometric entropy plays a role similar to the role of the en- 0.8 1
ergy in the Ising model, as can be seen in the expression for £
the free energy in the Ising modgd3]: = 0.6 M S,
F=N{KT[fIn(f)+(1—-f)In(1-f)]—-2f(1-f)Jz}, 0.4 .. e
(14)  feesesesens st
wherek is the Boltzmann constant, is temperature] is the 0.2 s
interaction energy between neighboring spins, and the M : !
number of nearest neighbors per site. Ising systems exhibit 0 -
0 0.2 0.4 0.6 0.8 1 1.2

phase separation whé&T< — Jz, which may now be seen to

be completely analogous to the conditiBn>1 for segre-
gation in granular binary mixtures at high compactivities. FIG. 4. Phase diagram of the,4-ugg plane under the assump-
tion that wag=min(uaa,ugg) for 2D (solid lines and 3D (dotted
B. Phase diagram lines). M indicates mixing,S,; and S, indicate segregatiorM re-

We would now like to generate a phase diagram for Segglons are always mixed. In 2[3 regions are segregated at high

- . enough compactivitysee text In 3D S; regions are always segre-
regation and _to c_:heck ff” which values pf_“A' MBB and . _gated, whileS, regions are segregated only at high enough com-
Map Segregation is possible. From mechanical conaderaﬂor%

. - activity (see Sec. Il .
we would expectuap to lie betweenua, and wgg. Since
Umax(#) iS monotonic,Av(u) is monotonic as well, and
Av ap is bounded betweev ,, andAvgg. First we notice
that if wag=max(uaa.ues), R.<0 and no segregation is Given the mechanical properties of the grains, namely,
expected. For given values Qiaa and ugg, R.. varies  uaa, pag, and ugg, We have employed a mean-field ap-
monotonically withuag, and a necessary condition for seg- proximation in order to solve the Edwards statistical me-
regation in intermediate values pfyg is that there is segre- chanics description of a granular mixture and to obtain the

C. Eliminating the compactivity

gation atuag=min(uaa,mep)- IN this case concentration(or concentrations in case of segregatitime
system will be found at as a function of compactivity. Even
R — In( \/ma)(AUAA’AUBB)> (15 though there is evidence that it may be controlled experimen-
* min(Avaa,Avgg) tally [26,27], the compactivity is still not a measurable quan-

tity, and we would like to reach a description of segregation
Figure 4 displays the regions in thess-ugg plane where independent of the notion of compactivity.
R.>1, and in which segregation may occur. Whep<1 For a single species we have seen that the total volume of
the two species are always expected to be mixed. When the system, and correspondingly its volume fraction, depend
>1 segregation occurs at the limits pfyg=min(uaa,ugg)  ON compactivity. We shall now derive the compactivity de-
andX—o. Segregation also occurs at larger valuesu@f,  pendence of the volume fraction in a binary mixture, and use
and at finite values oX. The existence of segregation may beit in order to eliminate the compactivity from the description
verified for the general case by checking whether the expresf segregation. This will result in a relation between concen-
sion for R(X) in Eq. (9) is greater than one. Here we only trations and volume fraction, which may be measured experi-
demonstrate our model results for the limits described abovenentally.
As will be shown in the following section, in some cases The average volume per grain may easily be derived from
segregation occurs for every compactivity. The phase diathe partition functioEq. (7)] as
gram shows that mixtures of grains with close friction coef-
ficients will mix and what difference in friction coefficients (v)= & ixzﬁ In(2) =X+ F2Qua(X)
is needed in order to achieve segregation. N N X AA

Within the framework of the mechanical model used here,

frictional forces are relevant only for 0Bu<1. If uan +21(1=H)Qae(X) +(1-1)*Qge(X),  (16)
=0.3 oruge=0.3 it is questionable whether this mechanical
model is valid. If bothusa=1 andugg=1 the friction has
an identical effect no matter what the valuesugfy and ugg
are, therefore the two species mix. If only oneugf, or ugg
is greater than one, the maximal volume per grain of the IR (X) v e tmin/X g @i X
corresponding species is unbounded, while for the second Q. (X)=X2 J — _min ]
species it is bounded, leading®,>1, and hence to segre- N axX e Umin/X_ gvij /X
gation. These regions are designated as well in Fig. 4. (17)

where
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of friction in 2D and 3D granular materials. For a single
species this describes the decrease in volume fraction with
increasing friction coefficient and with increasing compac-
tivity. An experimental test of the ideas presented is most
easily interpreted for systems differing in friction coefficient
but with the same compactivity. It is intriguing to consider
whether identical preparation would lead to equal compac-
tivities for systems differing only in friction coefficients.
In addition, the model has been used in order to investi-
gate segregation in binary mixtures of grains differing in
frictional properties. Unlike mixtures of grains differing in
""""" . , , , size, which may be mapped to the Ising model, frictional
-5 0.6 0.7 0.8 0.9 differences between grains result in larger entropy for the
rougher grains; therefore, these systems may not be mapped
FIG. 5. Concentratiori vs volume fractiond for uaxa=0.35,  exactly onto the Ising model, we find that segregation occurs
#e=0.75, andu,g=0.35 for 2D (solid lineg and 3D (dotted  above a critical compactivity and not below it. A phase dia-
lines). For low compactivitieor high volume fractionsa single  gram for segregation versus friction coefficients of the two
concentration is possible and the two species mix. For high comspecies, which may be tested experimentally, has been gen-
p_activities (or low yolume fractionp two concentrations are pos- grated. By eliminating the compactivity, we have also pro-
sible and segregation occurs. vided a relation between the volume fraction and the nature
of mixing or segregation. This relation both provides an op-
As for a single species, wheK—0, Q;j(X)—uvni, and  tion for experimental validation of the model and the statis-
(v)—vmin. Moreover, whenX—x, Q;(X)~vij+vmin tical hypothesis and allows one to identify mixtures which
- X, hence  (v)—vmintf2vaat2f(1-fvag+(1  are expected to segregate at every compactivity.

—)%vgg. The geometrical and mechanical models used to describe
The concentratioi may be expressed as a functionXf friction in this paper are more qualitative than quantitative,

by using Eq.(11). EliminatingX between Eqs(11) and(16),  and more sophisticated models may be suggested. However,
we obtainf as a function of the volume fractioir. This is  the qualitative results obtained here do not depend on their
plotted in Fig. 5 for typical values of the friction coefficients details but only on basic properties which all such models
(man=0.35, ugp=0.75, andug=0.35). At low compac- should have: the minimal volume does not depend on friction
tivities the volume fraction is high and the system is mixed.and the maximal volume and the number of possible states
As the compactivity is raised the volume fraction is reducedncrease with friction. The experimental validation or invali-
and at some critical point segregation commences, and twdation of the aforementioned results may shed light on the
different concentrations appear. These two values are thealidity of the statistical mechanics proposal of Edwards.
concentrations in different domains of the system. As the
compactivity is raised above the critical point the two con-

f
o o © o o o o ©o o

CoO = N W b O 0N N O =

centrations separate one from each other, enhancing the dif- ACKNOWLEDGMENTS
ference between the different domains. We identify the criti- ) ) )
cal compactivity for segregationX., above which We would like to thank Yael Roichman, Guy Bunin, Sam

segregation occurs and the critical volume fraction for segEdwards and Dmitri Grinev for helpful discussions. D.L. ac-

regation,®,=®(X,), below which segregation occurs. An kKnowledges support from Grant No. 9900235 of the U.S.-
important point to note in the case demonstrated in Fig. 5 i¢Srael Binational Science Foundation, Grant No. 88/02 of the
that in 3D®,=0.7, which is larger than the volume fraction Israel Science Foundation, and the Fund for the Promotion of

of 3D RCP,®rcp=0.64. Granular materials typically do not Research at the Technion.
reach volume fractions higher than that of RCP, therefore in
this case the compactivity is always high enough so that the
volume fraction is smaller tha® . and segregation always

occurs. We now use this argument in order to divide the 1his appendix describes the calculations leading from the
uan-tep Plane into regions wher® > ®gcp (denotedS;  mechanical models in 2D and 3D to the volume of the cor-
in Fig. 4), which are segregated for &l and regions where  esponding Voronoi cells around the grains, given in @.
O <®Prcp (denoteds; in Fig. 4), which are segregated only |, 2p the Voronoi cell around a grain is formed by the tan-
above someX (or only under someb.). Such consider- gents to it at the contact points with the surrounding grains.
ations may not be used in 2D, where full crystallization isThe segment of the Voronoi cell lying between two contacts
achieved experimentally. is the shaded rhombus in Fig. 1, which has an area of
r’tand, wherer is the grain radius and is half the angle
between two adjacent contacts. If all angles between adjacent
contacts are equal tof2 the Voronoi cell comprises of/ 6

We have used Edwards’ statistical mechanics hypothesisuch segments. Even though this is an integer number only
together with a simple mechanical model to describe the roléor discrete values of, we use this for continuous values of

APPENDIX: VORONOI CELL VOLUMES

IV. CONCLUSIONS
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region bounded between the three directi@s, OB, and
OC (or the planeAOB, BOC, andCOA) and the tangent
planesADGF, BEGD, andCFGE (which due to symmetry
meet at the poinG, which is located along the direction
from O to the center of the trianglé ABC). The segment of
the Voronoi cell may be divided into six tetrahedra of equal
volume all having the common ed@2G: OADG, OAFG,
OBDG, OBEG, OCEG, andOCFG. lts volume is hence
given by

SoccHEe _

, J3rsing
Useg™ 6vocec=6 3 r T 5.

1+3cogd’
(A1)

where Sy is the area of the triangl®CG andHg is the
FIG. 6. The segment of the 3D Voronoi cell around the graindistance of from the plane oAOCG. In order to calculate
centered aD and blocked between the three contakts, andC. the total volume of the Voronoi cell we calculate the number
The tangent planes at the contact points meet the planes formed I8 segments it comprises through the solid angle every such
the directions to the contact points@tE, andF and all meet aG. segment occupies. The angleAOB=/BOC=~2COA
= a may be calculated from the scalar product of any two of
. . . 9D the vectorsOA, OB and OC and is given by co&
0. The resuling area of the Voronoi cell i®,o  _(3¢c0s2+1)/4. The solid angle formed by these three vec-

=mr?tané/ 0 . _y
: , _ _ tors is Q=4 tan [ Jtan(3a/4)tar’(a/4)]. Therefore the
In 3D we use a triangulation of the contact points on they,5ronoi cell volume is

surface of every grain, and in analogy to the 2D case, we
consider the segment of the Voronoi cell bounded between 3 [aei

. 4 r°y3sindtane
three contact¢see Fig. 6. We assume that the three contact 3D m 7

points A, B, and C form an equilateral triangle, therefore ' Psed ) 30«
/AOG=/BOG=,C0OG=0, whereO is the center of (1+3 cogd)tan * tan—tart —
the grain ands lies on the line directed fror® to the center 4 4
of the triangleABC. The segment of the Voronoi cell is the (A2)
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contributions of all grains to the volume and not by summing
over the contributions of the contacts. In order to do this we
assume all the grains surrounding every grain are of a single
species. Under this assumption and in the mean-field approxi-
mation, the number of A grains surrounded by A grain§’ls,

the number of A grains surrounded by B graind (& —f)N,

the number of B grains surrounded by A grainsf{(d—f)N

and the number of B grains surrounded by B grains is (1
—f)2N. Since the volume of the Voronoi cell around eveéry
grain surrounded bygrains is bounded between,;, andv;; ,

the expression in Eq7) immediately follows.



