
PHYSICAL REVIEW E 68, 061301 ~2003!
Role of friction in compaction and segregation of granular materials

Yair Srebro and Dov Levine
Department of Physics, Technion, Haifa 32000, Israel

~Received 7 August 2003; published 3 December 2003!

We investigate the role of friction in compaction and segregation of granular materials by combining
Edwards’ thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical cal-
culations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures
of grains differing in frictional properties are found to segregate at high compactivities, contrary to granular
mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation versus
friction coefficients of the two species is generated. Finally, the characteristics of segregation are related
directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.
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I. INTRODUCTION

Friction plays a significant role in packings of grains in
granular material, however due to the nonequilibrium nat
of such materials their macroscopic properties do not tr
ally result from the microscopic physics of their constitute
Compaction and segregation are two macroscopic phen
ena which occur in granular materials undergoing series
extensive operations@1# ~operations of a statistical natur
rather than ‘‘Maxwell-demon’’ operations which act o
single grains!. Packings of identical hard spheres compac
by extensive operations reach a state of random close p
ing ~RCP!, rather than an ordered crystalline packing, wh
has a higher volume fraction~defined as the ratio of the sum
of grain volumes to the volume the system occupies!. Under-
standing the process leading to RCP, its geometrical pro
ties, and whether higher volume fractions may be obtaine
of great importance for physics and for engineering. T
tendency towards segregation in granular mixtures comp
ing grains with various mechanical properties is interest
for the physicist and disturbing for the engineer, for whom
homogeneous mixture is often an industrial need~for a re-
view see Ref.@2#!.

Segregation in granular materials has received much
tention in recent years~for a review see Ref.@3#!. The phe-
nomenon is observed for grains varying in size@4#, shape
@5#, friction coefficient@6#, and density@7#. Segregation oc-
curs due to vibration@8#, tapping@9#, rotation @6#, pouring
@10#, and shearing@11#. Experiments are performed for mix
tures of many particles of two different species~for a review
see Ref.@12#! and with single intruder particles in systems
a single species@13#. Existing theoretical modeling of segre
gation due to rotation@6,14,15# and pouring@10,16# is based
on kinetic phenomena: segregation is explained as a resu
different flow properties of the different species. Mon
Carlo simulations of dynamic phenomena in vibrated s
tems give insight into segregation@17# as well as compaction
dynamics of single species systems@18#. Similar dynamic
phenomena have been captured analytically in models b
on free volume considerations@19–21#.

This paper deals with the role of friction in compactio
and segregation through the analysis of the static prope
of granular materials. The results obtained may be use
1063-651X/2003/68~6!/061301~9!/$20.00 68 0613
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order to verify experimentally the validity of the models us
for describing these static properties. One such proposa
the description of static granular materials is the analogy
the statistical mechanics of thermodynamic equilibrium p
posed by Edwards@1#, a more detailed description of whic
will be given in the following section. The central idea b
hind it is that even though the system is static and does
move with time within the ensemble of mechanically stab
arrangement of the grains, we may assume ergodicity
employ statistical mechanics considerations for the proba
ity of finding the system in any one of its states. This mod
requires the existence of an analog of temperature, refe
to as ‘‘compactivity’’ ~other effective temperatures may b
defined for jammed granular materials@22,23#, and attempts
have been done to connect them to the compactivity@24,25#!.
Recent experimental evidence for reversibility in compact
processes@26# has provided justification for this thermody
namic analogy and have proposed a connection betw
compactivity and experimentally controllable quantities@27#,
however the proposal remains controversial.

Edwards’ hypothesis is that an analog of the free ene
Y5V2XS is minimized, whereV is the system volume,S is
the entropy, andX is the compactivity. Our expectation tha
this formalism may predict frictional segregation, as will b
shown rigorously and discussed in the following sections
based on the following argument. Consider two systems
identical grains, such that the friction coefficient of the fir
system,m1, is greater than that of the second system,m2.
Then S1.S2 because every configuration available to t
second system may be identically realized to the first syst
while the converse is not true. This suggests that under
tain circumstances a mixture of grains with different frictio
coefficients may prefer to segregate in order that its entr
be maximized, competing with the preference of the entro
of mixing to be maximized in the homogeneously mix
state.

The statistical hypothesis has been used to investig
segregation in binary mixtures of species differing in size
mapping them to the Ising model, resulting in segregat
below some critical compactivity@1,28#. Recent geometrica
calculations have enabled relating the ideas of the statis
proposal to actual densities of granular systems@29#.

In Sec. II we use Edwards’ statistical hypothesis toget
©2003 The American Physical Society01-1
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with a simple mechanical model for the quantitative desc
tion of friction in two-dimensional~2D! and 3D single spe-
cies granular materials. This is combined with simple cal
lations of Voronoi cell volumes for general coordinatio
numbers resulting in the dependence of volume fraction
friction coefficient and compactivity. Section III uses th
mean-field approximation in order to describe segregatio
a binary mixture of grains differing in frictional propertie
Unlike mixtures of grains differing in size, which may b
mapped to the Ising model@1,28#, frictional differences be-
tween grains result in larger entropy for the rougher gra
Therefore, these systems may not be mapped exactly
the Ising model and segregation occurs above a critical c
pactivity and not below it. We then generate a phase diag
for segregation versus friction coefficients of the two spec
Finally, the dependence of the results on compactivity
eliminated by using the volume fraction as a measure
compactivity. Section IV concludes with a summary of t
results.

II. SINGLE SPECIES

A. Statistical model

We use the statistical mechanics hypothesis propose
Edwards@1# for the description of jammed granular system
In this formalism each mechanically stable arrangemen
the grains is equivalent to a microstate in statistical mech
ics, and the total volume the grains occupy plays the role
the energy. The analog of temperature is assumed to exi
denotedX, and is called the compactivity. We measureX in
units of grain volume so that the analog of the Boltzma
constant is equal to unity andX is dimensionless. In analog
with the canonical ensemble of states in thermal systems
probability for the occurrence of a state with volumeV is
assumed to be proportional toe2V/X.

We consider a system ofN identical spherical~in 3D! or
circular ~in 2D! grains. For every arrangement of the grain
the total volume of the system may be written as the s
over all grains of the Voronoi cell volume around each gra
v i :

V5(
i 51

N

v i . ~1!

Average volumes of Voronoi cells, calculated neglecting s
tial correlations between locations of grains, have be
shown to agree with exact calculations@30#. Moreover, cor-
relations have been shown to have a small effect on the
pendence of total volume on compactivity@29#. Therefore,
we use a mean-field approximation and assume that the
ume of every Voronoi cell is evenly distributed between
minimal and a maximal volume,vmin and vmax. The geo-
metrical and mechanical considerations determining th
volumes will be presented in the following section, and
this stage it is only assumed thatvmin andvmax are uniform
for all grains in the system.

Following the analogy with the canonical ensemble,
may calculate the partition function:
06130
-

-

n

in

s.
to
-

m
s.
s
r

by
.
f

n-
f

, is

n

he

,

,

-
n

e-

ol-

se
t

e

Z5E
vmin

vmax
•••E

vmin

vmax
e2(v i /Xdv1•••dvN

5S E
vmin

vmax
e2v/Xdv D N

5F2Xe2vmid /X sinhS Dv
X D GN

, ~2!

where we have introduced the notationsvmid[(vmin
1vmax)/2 andDv[(vmax2vmin)/2.

The average volume per grain may easily be derived fr
the partition function as

^v&5
^V&
N

5
1

N
X2

] ln~Z!

]X
5vmid1X2Dv cothS Dv

X D .

~3!

This expression has been derived in Ref.@1#, and it is clearly
seen that asX→0, ^v&→vmin and asX→`, ^v&→vmid .
This is analogous to thermal systems, where at low temp
tures the system is most probable to be found in its gro
state, and as the temperature is increased exited state
occupied with increasing probability until the limit of infinit
temperature, where all states are occupied with an eq
probability, and the system’s energy is the average energ
all these states.

B. Mechanical model

We would now like to introduce mechanical and ge
metrical considerations to estimatevmin and vmax, which
must be known in order to evaluate the expression in Eq.~3!.
The minimal volume is achieved for hexagonal packing
2D and face centered cubic or hexagonal close packing
3D. The corresponding Voronoi cell volumes arevmin

2D

5A12r 2 andvmin
3D 5A32r 3, wherer is the grain radius. The

resulting volume fractions areFmax
2D 5pr 2/vmin

2D 5p/A12
.0.91 andFmax

3D 5(4p/3)r 3/vmin
3D 5p/A18.0.74.

Although purely geometric considerations determi
vmin , the frictional forces between the grains manifest the
selves invmax. The idea behind this is that friction at grai
contacts allows for the formation of arcs and for a grad
decrease in the number of contacts per grain@31#, which in
turn increases the volume of the Voronoi cell around ev
grain.

In order to estimate the effect of friction in granular m
terials we will consider ‘‘toy systems’’ consisting of a sma
number of grains~three in 2D and four in 3D!, calculate the
effect of friction there, and use the result in order to obta
an approximate prediction for the dependence ofvmax on the
friction coefficientm. This, in turn, may be inserted togethe
with vmin into Eq. ~3! in order to obtain an approximat
expression for the dependence of the total volume of
system, and hence of the volume fraction, onm. The results
will depend on the compactivity, whose physical significan
still requires elucidation. However, even without understa
ing its significance, a few predictions for experimental r
sults may be drawn from the model presented here.
1-2
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ROLE OF FRICTION IN COMPACTION AND . . . PHYSICAL REVIEW E68, 061301 ~2003!
The 2D toy system consists of two grains lying on top
a horizontal plane and a third grain lying on top of these~see
Fig. 1!. All grains and the horizontal plane are assumed to
hard, and frictional forces with an equal coefficient of fri
tion, m, act at all four contacts. A uniform gravitational forc
acts downwards on all grains. The condition for mechan
equilibrium is that forces and torques acting on all gra
vanish. It can easily be seen that this is satisfied whenev

sinu

11cosu
<m, ~4!

whereu is half the angle between contacts of the top gr
with the bottom grains~see Fig. 1!. For m>1 Eq. ~4! is
always satisfied, and any state withp/6<u<p/2 is me-
chanically stable. For smaller values ofm only states with
u<umax are mechanically stable, whereumax is determined
from

sinumax

11cosumax
5m. ~5!

If m<(21A3)21.0.3, the frictional forces cannot hold th
top grain on top of the two bottom ones, and these sim
considerations may not be used in order to determinevmax.
In this case the volume of the Voronoi cell around eve
grain is set in the model tovmin . Substituting this into Eq.
~3! yields^v&5vmin , which corresponds to the maximal vo
ume fraction quoted earlier, and hence, to crystallizati
Therefore, this model may not be used for frictionless s
tems, since it predicts crystallization at every compactivi

In 3D we consider three grains in an equilateral trian
lying on top of a horizontal plane and a fourth grain lying
top of them@see Fig. 2~a!#. As in the 2D case, all grains an
the horizontal plane are assumed to be hard, frictional for
with an equal coefficient of friction,m, act at all six contacts
and a uniform gravitational force acts downwards on
grains. Again, the condition for mechanical equilibrium c
easily be seen to be given by Eq.~4!, however nowu is the
angle between the vertical direction and the line connec
the top grain with any one of the bottom grains@see Fig.
2~b!#. As in 2D, for small values ofm, and specifically for
frictionless systems, these considerations cannot be use
estimate the volume fraction, since this model predicts cr
tallization regardless of compactivity, while actual 3D gran
lar systems do not fully crystallize, but fall into a RCP sta

FIG. 1. The 2D ‘‘toy system.’’ The shaded rhombus is the se
ment of the Voronoi cell lying between two adjacent contacts.
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We would now like to use the results of these simp
considerations to evaluate the maximal volume of
Voronoi cell around every grain in a granular material.
such systems frictional forces allow the existence of la
angles between contacts of every grain with its surround
grains. We assume that the maximal angle between con
in a granular material depends on the friction coefficient i
similar manner to its dependence in the toy systems. In o
to calculate the Voronoi cell volume around every grain
first assume that the grain is far from the system’s bou
aries, since we are seeking a description of average b
properties of the packing. Moreover, we assume that
angles between adjacent contacts of this grain with its s
rounding grains are uniform and are given byu as in the toy
systems. Note that since we allowu to vary continuously, it
may not necessarily be physically possible to build the
packings, even locally. In 2D it is possible only ifu is an
integer fraction ofp, while in 3D it is possible only if the
coordination number is 4 or 6, which correspond tou
.1.23 andu.0.96, respectively. The general expression
the Voronoi cell volume is~see the Appendix!

v~u!55
pr 2 tanu

u
~2D!

pr 3A3sinu tanu

~113 cos2u!tan21SAtan
3a

4
tan3

a

4
D ~3D!,

~6!

where a5cos21@(3 cos 2u11)/4# is the angle between two
adjacent contacts~see Fig. 6!.

C. Results

We combine Eqs.~5! and ~6! to get the dependence o
vmax on m. The resulting volume fractionF is now calcu-
lated using Eq.~3! and plotted in Fig. 3 as a function o
friction coefficient and compactivity. Compaction depen
on friction only in the region 0.3&m,1, where the me-
chanical model used here is relevant. AsX→0, F ap-
proaches its maximal value~determined from geometrica
considerations!, and asX→`, it approaches a value large
than its minimal value~determined from mechanical consid
erations!, since all possible volumes between the minim

- FIG. 2. ~a! The 3D ‘‘toy system.’’~b! Section of the top grain
and one of the bottom grains.
1-3
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Y. SREBRO AND D. LEVINE PHYSICAL REVIEW E68, 061301 ~2003!
and maximal are equally probable. Obviously,F decreases
as eitherm or X increases. The dependence of volume fr
tion on friction predicted here may be investigated expe
mentally, by comparing granular packings differing only
friction coefficient, which have otherwise been prepar
identically, and hence may be reasonably assumed to h
equal compactivities.

III. TWO SPECIES: SEGREGATION

A. Mean-field model

We would now like to describe a system consisting of t
species of grains differing only in frictional properties. Th
central question we wish to address in such system
whether the two species mix homogeneously, or segre
into separate domains. For a system of two species denotA
andB, we shall assume we know the compactivityX and the
friction coefficientsmAA , mAB , andmBB between two grains
of type A, between a grain of typeA and a grain of typeB,
and between two grains of typeB, respectively. The consid
erations presented in the preceding section may be use
order to calculate the maximal volumesvAA[vmax(mAA),
vAB[vmax(mAB) and vBB[vmax(mBB) of the Voronoi cells
around anA grain surrounded byA grains, anA grain sur-
rounded byB grains~or a B grain surrounded byA grains!,
and aB grain surrounded byB grains, respectively. We de
scribe a monodisperse system, hence the correspon
minimal volumes are identical for all types of grains and a
denoted here byvmin .

We would now like to write the partition functionZ for
two species and to derive from it the analog of free ene
Y52X ln(Z), as a function of the concentrationf [NA /N,
whereN is the total number of grains andNA is the number
of A grains. The constraint on the total number of grains
each species in the system causes us to viewf as a local
concentration which varies throughout the system. As in
mean-field description of a binary alloy, which is equivale

FIG. 3. Volume fractionF vs friction coefficientm, for several
values of the dimensionless compactivityX for 2D ~solid lines! and
for 3D ~dotted lines!. Volume fractions are normalized according
their maximal values,Fmax5p/A12.0.91 in 2D and Fmax

5p/A18.0.74 in 3D. The bounding minimal and maximal volum
fractions,Fmin andFmax, are also plotted.
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to the Ising model, a single minimum ofY( f ) means the two
species tend to get mixed homogeneously at a concentra
equal to the global concentration determined from the nu
ber of grains of each species. The existence of two minim
Y( f ) means that the system tends to separate into dom
with two different concentrations. The percentage of the s
tem with each of these two minimizing local concentratio
is determined from the global concentration according to
Maxwell construction~see, e.g., Ref.@32#!.

The number ofA grains isNA5 f N and the number ofB
grains isNB5(12 f )N. In the mean-field approximation th
number ofA-A contacts isNAA5 f 2Nz/2, the number ofA-B
contacts isNAB5 f (12 f )Nz, and the number ofB-B con-
tacts isNBB5(12 f )2Nz/2, wherez is the average numbe
of neighbors per grain, or the average coordination num
which is assumed to be uniform for all types of grains. T
contribution of every contact to the total volume is limite
according to its type between 2vmin /z and 2v i j /z, with i and
j denotingA or B for the types of the two grains in contac
The partition function is

Z5
N!

~ f N!! @~12 f !N#! S E
vmin

vAA
e2v/Xdv D f 2N

3S E
vmin

vAB
e2v/Xdv D 2 f (12 f )NS E

vmin

vBB
e2v/Xdv D (12 f )2N

.

~7!

Not only doesZ not depend onz when z is assumed to be
uniform for all types of grains, it can easily be seen th
when different values ofz are assigned to the different type
of grains, the same expression is obtained. This is an im
tant result in the analogy between the configurational sta
tical mechanics of a granular mixture and the Ising mode
a binary alloy. In the Ising model spins are arranged on
ordered lattice, all spins have the same number of nea
neighbors,z, and the total energy is determined by the sta
of the spins on all the lattice sites. In a granular system,
the other hand, the disordered spatial configuration de
mines the volume of the system and every type of grain m
have a different number of nearest neighbors, or a differ
coordination number, which is related to the volume of t
Voronoi cell around it, or to the volume it occupies. Due
the different friction coefficients,z varies between the differ
ent types of grains, as is indicated in Ref.@31# where the
friction dependence of the average number of contact
investigated. The number of contacts of every type and
contribution of every contact to the total volume depend
versely onz, and since only their product enters the to
volume of the system, the resulting partition function do
not depend on the values ofz for the different types of grains
@34#. We will soon see where such physical differences
tween the granular mixture and the Ising model do affect
resulting behavior of the system.

Using the partition function we now evaluate the free e
ergy:
1-4
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ROLE OF FRICTION IN COMPACTION AND . . . PHYSICAL REVIEW E68, 061301 ~2003!
Y~ f ,X,N!52X ln~Z!5XN@ f ln~ f !1~12 f !ln~12 f !

12 f ~12 f !R~X!2 ln~X!2 f RAA~X!

2~12 f !RBB~X!#, ~8!

where we have used the notationsRi j (X)[ ln(e2vmin /X

2e2vij /X) andR(X)[@RAA1RBB)/2]2RAB , and the Stirling
formula has been used to evaluate lnN! for largeN. Defining
Dv i j [v i j 2vmin we see that

R~X!5 lnS A~12e2DvAA /X!~12e2DvBB /X!

~12e2DvAB /X!
D . ~9!

We would now like to minimizeY for given overall compo-
sitionsNA andNB and for a given compactivityX. Equation
~8! has been derived under the mean-field approximat
therefore it describes the free energy of a region with u
form concentration,f. Formally we should now define th
local concentration as a spatially dependent coarse gra
function f (rW) and the free energy as its functional,Y@ f (rW)#

5*Y@ f (rW)#drW, and require thatf (rW) minimize Y under the
constraint that (1/V)* f (rW)drW5NA /N. The spatial integral
over all the system of the last three terms in Eq.~8!, which
are linear inf, is independent of the functionf (rW). Therefore
these terms do not contribute to the minimization ofY, and
we need only consider the contribution of the first thr
terms toY. We thus obtain an expression similar to the me
field free energy of an Ising model or of a binary alloy@33#.
The ‘‘equilibrium’’ concentration is now determined from

]Y

] f
5XNF lnS f

12 f D12~122 f !R~X!G50, ~10!

which is equivalent to

2 f 215tanh@R~X!~2 f 21!#. ~11!

For R(X),1 the only solution to this equation isf 50.5,
which corresponds to mixing, while forR(X).1 two differ-
ent solutions exist and the systems segregates into reg
with these two minimizing concentrations. Therefore, t
condition for segregation is thatR(X).1, whereR(X) is
given by Eq.~9!.

SinceR(X→0)50, no segregation occurs in the limit o
low compactivities. Contrast this to the behavior of the Isi
model and binary alloys, where phase separation exist
low temperatures, and specifically in the limit of zero te
perature@33#. Here there is a minimal critical compactivity
above which segregation occurs, rather than the maxi
critical temperature, below which phase separation occur
the Ising model. The basic difference between the mo
presented here for granular materials and the Ising mod
as follows. In the Ising model the energy of the system
determined only from its topological state, namely, once
topology of which element is the nearest neighbor of wh
other elements is specified, the total energy of the syste
determined. In the mean-field approximation these topolo
cal states are described by the concentration, hence the
06130
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ergy depends only on it. In the granular model presented h
a topological state, specifying the types of contacts aro
every grain, allows for a range of volumes for the Voron
cells around every grain and therefore for a range of val
for the overall volume of the system. As in the Ising mod
the topological state is specified by the concentration in
mean-field approximation, however the total volume of t
system depends both on the concentration and on the c
pactivity X.

The reason for segregation only at high compactivit
may be understood to stem from the range of possible
umes in the following way. All the Voronoi cells around th
grains have the same minimal volumevmin determined from
geometrical considerations. The probability for finding
Voronoi cell in an exited state with a larger volume,v
.vmin , decays ase2v/X. Therefore at the limitX→0 all
Voronoi cells are expected to be found in their ground sta
namely, to have a volumev5vmin , independent of the fric-
tion of the grains, which only determines the maxim
Voronoi cell volume,vmax(m). Hence, at low compactivities
the differences between grains vanish and the two spe
mix homogeneously. Segregation may occur only at h
compactivities, where exited states, which exist due to f
tion, have a greater ‘‘thermodynamic’’ weight. This occu
rence of segregation at high compactivities rather than at
compactivities may explain the frequent appearance of s
regation in granular systems, which typically have significa
compactivities, sinceX50 corresponds to a crystalline pac
ing.

Since forR.0, R(X) is a monotonic function@as can be
seen from Eq.~9!# which begins at zero, and since the co
dition for segregation is thatR.1, there is only a minimal
critical compactivity for segregation~and no upper bound
above which there is no segregation! so we may determine
whether segregation is possible by investigating the h
compactivity limit of R(X). This limit may easily be evalu-
ated to be equal to

R`[R~X→`!5 lnSADvAADvBB

DvAB
D , ~12!

and the condition for the existence of a critical compactiv
for segregation for given values of the friction coefficients
that R`.1.

This condition may be understood in the following wa
The free energy,Y5V2XS, includes a volumeV term and
an entropyS term. At high compactivities the entropy dom
nates and minimizing the free energy is equivalent to ma
mizing the entropy. The entropy includes two factors,
‘‘combinatoric entropy’’ related to the topological state of th
system, namely, which grain is in contact with which oth
grains, and a ‘‘geometric’’ entropy related to the variety
volumes the Voronoi cell around every grain may ha
within one specific topological state~this is not the case for
the Ising model, where the topological state determines
state of the system, and the total entropy includes only
combinatoric entropy, or the entropy of mixing@32#!.

The entropy’s dependence on concentration at the li
X→` is given by
1-5
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S52N@ f ln~ f !1~12 f !ln~12 f !12 f ~12 f !R`#.

~13!

The first two terms are the combinatoric entropy or entro
of mixing, while the last term is the geometric entropy. T
geometric entropy plays a role similar to the role of the e
ergy in the Ising model, as can be seen in the expression
the free energy in the Ising model@33#:

F5N$kT@ f ln~ f !1~12 f !ln~12 f !#22 f ~12 f !Jz%,

~14!

wherek is the Boltzmann constant,T is temperature,J is the
interaction energy between neighboring spins, andz is the
number of nearest neighbors per site. Ising systems ex
phase separation whenkT,2Jz, which may now be seen to
be completely analogous to the conditionR`.1 for segre-
gation in granular binary mixtures at high compactivities.

B. Phase diagram

We would now like to generate a phase diagram for s
regation and to check for which values ofmAA , mBB , and
mAB segregation is possible. From mechanical considerat
we would expectmAB to lie betweenmAA and mBB . Since
vmax(m) is monotonic,Dv(m) is monotonic as well, and
DvAB is bounded betweenDvAA andDvBB . First we notice
that if mAB5max(mAA,mBB), R`,0 and no segregation i
expected. For given values ofmAA and mBB , R` varies
monotonically withmAB , and a necessary condition for se
regation in intermediate values ofmAB is that there is segre
gation atmAB5min(mAA,mBB). In this case

R`5 lnSAmax~DvAA ,DvBB!

min~DvAA ,DvBB!
D . ~15!

Figure 4 displays the regions in themAA-mBB plane where
R`.1, and in which segregation may occur. WhenR`,1
the two species are always expected to be mixed. WhenR`

.1 segregation occurs at the limits ofmAB5min(mAA,mBB)
andX→`. Segregation also occurs at larger values ofmAB
and at finite values ofX. The existence of segregation may
verified for the general case by checking whether the exp
sion for R(X) in Eq. ~9! is greater than one. Here we on
demonstrate our model results for the limits described abo
As will be shown in the following section, in some cas
segregation occurs for every compactivity. The phase
gram shows that mixtures of grains with close friction co
ficients will mix and what difference in friction coefficient
is needed in order to achieve segregation.

Within the framework of the mechanical model used he
frictional forces are relevant only for 0.3&m<1. If mAA
&0.3 ormBB&0.3 it is questionable whether this mechanic
model is valid. If bothmAA>1 andmBB>1 the friction has
an identical effect no matter what the values ofmAA andmBB
are, therefore the two species mix. If only one ofmAA or mBB
is greater than one, the maximal volume per grain of
corresponding species is unbounded, while for the sec
species it is bounded, leading toR`.1, and hence to segre
gation. These regions are designated as well in Fig. 4.
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C. Eliminating the compactivity

Given the mechanical properties of the grains, nam
mAA , mAB , and mBB , we have employed a mean-field a
proximation in order to solve the Edwards statistical m
chanics description of a granular mixture and to obtain
concentration~or concentrations in case of segregation! the
system will be found at as a function of compactivity. Ev
though there is evidence that it may be controlled experim
tally @26,27#, the compactivity is still not a measurable qua
tity, and we would like to reach a description of segregat
independent of the notion of compactivity.

For a single species we have seen that the total volum
the system, and correspondingly its volume fraction, dep
on compactivity. We shall now derive the compactivity d
pendence of the volume fraction in a binary mixture, and u
it in order to eliminate the compactivity from the descriptio
of segregation. This will result in a relation between conce
trations and volume fraction, which may be measured exp
mentally.

The average volume per grain may easily be derived fr
the partition function@Eq. ~7!# as

^v&5
^V&
N

5
1

N
X2

] ln~Z!

]X
5X1 f 2QAA~X!

12 f ~12 f !QAB~X!1~12 f !2QBB~X!, ~16!

where

Qi j ~X![X2
]Ri j ~X!

]X
5

vmine
2vmin /X2v i j e

2v i j /X

e2vmin /X2e2v i j /X
.

~17!

FIG. 4. Phase diagram of themAA-mBB plane under the assump
tion that mAB5min(mAA ,mBB) for 2D ~solid lines! and 3D ~dotted
lines!. M indicates mixing,S1 and S2 indicate segregation.M re-
gions are always mixed. In 2DS regions are segregated at hig
enough compactivity~see text!. In 3D S1 regions are always segre
gated, whileS2 regions are segregated only at high enough co
pactivity ~see Sec. III C!.
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As for a single species, whenX→0, Qi j (X)→vmin and
^v&→vmin . Moreover, when X→`, Qi j (X)'v i j 1vmin
2X, hence ^v&→vmin1 f 2vAA12 f (12 f )vAB1(1
2 f )2vBB .

The concentrationf may be expressed as a function ofX
by using Eq.~11!. EliminatingX between Eqs.~11! and~16!,
we obtainf as a function of the volume fractionF. This is
plotted in Fig. 5 for typical values of the friction coefficien
(mAA50.35, mBB50.75, andmAB50.35). At low compac-
tivities the volume fraction is high and the system is mixe
As the compactivity is raised the volume fraction is reduc
and at some critical point segregation commences, and
different concentrations appear. These two values are
concentrations in different domains of the system. As
compactivity is raised above the critical point the two co
centrations separate one from each other, enhancing the
ference between the different domains. We identify the cr
cal compactivity for segregation,Xc , above which
segregation occurs and the critical volume fraction for s
regation,Fc[F(Xc), below which segregation occurs. A
important point to note in the case demonstrated in Fig.
that in 3DFc.0.7, which is larger than the volume fractio
of 3D RCP,FRCP.0.64. Granular materials typically do no
reach volume fractions higher than that of RCP, therefore
this case the compactivity is always high enough so that
volume fraction is smaller thanFc and segregation alway
occurs. We now use this argument in order to divide
mAA-mBB plane into regions whereFc.FRCP ~denotedS1
in Fig. 4!, which are segregated for allX, and regions where
Fc,FRCP ~denotedS2 in Fig. 4!, which are segregated onl
above someXc ~or only under someFc). Such consider-
ations may not be used in 2D, where full crystallization
achieved experimentally.

IV. CONCLUSIONS

We have used Edwards’ statistical mechanics hypoth
together with a simple mechanical model to describe the

FIG. 5. Concentrationf vs volume fractionF for mAA50.35,
mBB50.75, andmAB50.35 for 2D ~solid lines! and 3D ~dotted
lines!. For low compactivities~or high volume fractions! a single
concentration is possible and the two species mix. For high c
pactivities ~or low volume fractions! two concentrations are pos
sible and segregation occurs.
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of friction in 2D and 3D granular materials. For a sing
species this describes the decrease in volume fraction
increasing friction coefficient and with increasing compa
tivity. An experimental test of the ideas presented is m
easily interpreted for systems differing in friction coefficie
but with the same compactivity. It is intriguing to consid
whether identical preparation would lead to equal comp
tivities for systems differing only in friction coefficients.

In addition, the model has been used in order to inve
gate segregation in binary mixtures of grains differing
frictional properties. Unlike mixtures of grains differing i
size, which may be mapped to the Ising model, friction
differences between grains result in larger entropy for
rougher grains; therefore, these systems may not be ma
exactly onto the Ising model, we find that segregation occ
above a critical compactivity and not below it. A phase d
gram for segregation versus friction coefficients of the t
species, which may be tested experimentally, has been
erated. By eliminating the compactivity, we have also p
vided a relation between the volume fraction and the nat
of mixing or segregation. This relation both provides an o
tion for experimental validation of the model and the stat
tical hypothesis and allows one to identify mixtures whi
are expected to segregate at every compactivity.

The geometrical and mechanical models used to desc
friction in this paper are more qualitative than quantitativ
and more sophisticated models may be suggested. How
the qualitative results obtained here do not depend on t
details but only on basic properties which all such mod
should have: the minimal volume does not depend on frict
and the maximal volume and the number of possible sta
increase with friction. The experimental validation or inva
dation of the aforementioned results may shed light on
validity of the statistical mechanics proposal of Edwards.
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APPENDIX: VORONOI CELL VOLUMES

This appendix describes the calculations leading from
mechanical models in 2D and 3D to the volume of the c
responding Voronoi cells around the grains, given in Eq.~6!.
In 2D the Voronoi cell around a grain is formed by the ta
gents to it at the contact points with the surrounding grai
The segment of the Voronoi cell lying between two conta
is the shaded rhombus in Fig. 1, which has an area
r 2tanu, wherer is the grain radius andu is half the angle
between two adjacent contacts. If all angles between adja
contacts are equal to 2u, the Voronoi cell comprises ofp/u
such segments. Even though this is an integer number
for discrete values ofu, we use this for continuous values o

-
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u. The resulting area of the Voronoi cell isvvor
2D

5pr 2 tanu/u.
In 3D we use a triangulation of the contact points on

surface of every grain, and in analogy to the 2D case,
consider the segment of the Voronoi cell bounded betw
three contacts~see Fig. 6!. We assume that the three conta
points A, B, and C form an equilateral triangle, therefor
/AOG5/BOG5/COG5u, where O is the center of
the grain andG lies on the line directed fromO to the center
of the triangleABC. The segment of the Voronoi cell is th

FIG. 6. The segment of the 3D Voronoi cell around the gr
centered atO and blocked between the three contactsA, B, andC.
The tangent planes at the contact points meet the planes forme
the directions to the contact points atD, E, andF and all meet atG.
,

ns

. E

re
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region bounded between the three directionsOA, OB, and
OC ~or the planesAOB, BOC, andCOA) and the tangent
planesADGF, BEGD, andCFGE ~which due to symmetry
meet at the pointG, which is located along the directio
from O to the center of the trianglenABC). The segment of
the Voronoi cell may be divided into six tetrahedra of equ
volume all having the common edgeOG: OADG, OAFG,
OBDG, OBEG, OCEG, andOCFG. Its volume is hence
given by

vseg56vOCEG56
SOCGHE

3
5r 2 tanu

A3r sinu

113 cos2u
,

~A1!

whereSOCG is the area of the triangleOCG andHE is the
distance ofE from the plane ofnOCG. In order to calculate
the total volume of the Voronoi cell we calculate the numb
of segments it comprises through the solid angle every s
segment occupies. The angle/AOB5/BOC5/COA
5a may be calculated from the scalar product of any two
the vectors OA, OB and OC and is given by cosa
5(3 cos 2u11)/4. The solid angle formed by these three ve
tors is V54 tan21@Atan(3a/4)tan3(a/4)#. Therefore the
Voronoi cell volume is

vvor
3D 5vseg

4p

V
5

pr 3A3sinu tanu

~113 cos2u!tan21SAtan
3a

4
tan3

a

4
D .

~A2!
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contributions of all grains to the volume and not by summi
over the contributions of the contacts. In order to do this
assume all the grains surrounding every grain are of a sin
species. Under this assumption and in the mean-field appr
mation, the number of A grains surrounded by A grains isf 2N,
the number of A grains surrounded by B grains isf (12 f )N,
the number of B grains surrounded by A grains isf (12 f )N
and the number of B grains surrounded by B grains is
2 f )2N. Since the volume of the Voronoi cell around everyi
grain surrounded byj grains is bounded betweenvmin andv i j ,
the expression in Eq.~7! immediately follows.
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